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COMPUTATIONS OF A LAMINAR BACKWARD-FACING
STEP FLOW AT Re=800 WITH A SPECTRAL DOMAIN
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SUMMARY

The two-dimensional laminar incompressible flow over a backward-facing step is computed using a
spectral domain decomposition approach. A minimum number of subdomains (two) is used; high
resolution being achieved by increasing the order of the basis Chebyshev polynomial. Results for the case
of a Reynolds number of 800 are presented and compared in detail with benchmark computations. Stable
accurate steady flow solutions were obtained using substantially fewer nodes than in previously reported
simulations. In addition, the problem of outflow boundary conditions was examined on a shortened
domain. Because of their more global nature, spectral methods are particularly sensitive to imposed
boundary conditions, which may be exploited in examining the effect of artificial (non-physical) outflow
boundary conditions. Two widely used set of conditions were tested: pseudo stress-free conditions and
zero normal gradient conditions. Contrary to previous results using the finite volume approach, the latter
is found to yield a qualitatively erroneous yet stable flow-field. Copyright © 1999 John Wiley & Sons,
Ltd.
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1. INTRODUCTION AND REVIEW

The two-dimensional laminar incompressible flow over a backward-facing step (BFS) is a
canonical example of a separated flow with reattachment, and the relative simplicity of its
numerical formulation has made it popular as a benchmark case. Although it has received
much attention, it still poses challenges, or at least traps, for the unwary analyst, as evidenced
in the recent controversy regarding the flow at a Reynolds number (based on channel height
and average channel velocity) of Re=800. Kaiksis et al. [1] computed this flow using the
spectral element method, which might be viewed as a finite element approach using high-order
‘spectral’ basis functions rather than the more conventional low-order polynomials. They
argued that the flow at Re=800 is unsteady and exhibited chaotic behavior. A similar
conclusion was also reached in studies using unsteady finite volume approaches [2,3]. This
however, conflicted with benchmark finite element computations [4], computed assuming a
steady flow. A collaborative effort [5] (hereafter referred to as G93) reconsidered this problem
using a variety of methods, and found that, even when a transient simulation was performed,
the BFS flow at Re=800 was stable and steady. The most convincing case was presented by
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repeating the computations with a spectral element code very similar to that used by
Kaiksis et al. [1], and finding that the flow was underresolved with the Kaiksis et al. ‘grid’,
and that, through the use of a more refined grid, a steady flow was achieved (see also
Torczynski [6]).

The present work was motivated in part by the above controversy and its implications
for the use of spectral methods with domain decomposition (the spectral element approach
being only one of several spectral domain decomposition methods). The results of G93 with
the spectral element method suggested that quite a fine spectral grid, more comparable with
conventional finite element meshes, was necessary in order to fully resolve the flow. This
makes the spectral approach correspondingly less attractive for high resolution computa-
tions in comparison with more conventional approaches. Doubt was cast on the ‘exponen-
tial’ accuracy of spectral methods (its main advantage in comparison with more common
methods) when applied to the BFS flow. A possible explanation, the presence of a singular-
ity at the step, was offered, since exponential accuracy is guaranteed only for ‘smooth’
solutions, and the presence of singularities will degrade the solution obtained by a spectral
method. The aspect ratio of the elements was also singled out as a measure of grid
refinement. On the most refined grid, the aspect ratio of the elements was restricted to a
maximum value of 2, contrasting with a maximum value of 10 in the Kaiksis et al. grid.

A modified version of the pseudo spectral matrix element (PSME) method [7] is applied
in the present work to the BFS flow. A steady flow solution for Re=800 was obtained
with even fewer nodes than was used in the Kaiksis et al. grid, which was found inade-
quate in G93. In addition, the problem of outflow or open boundary conditions (OBCs) is
considered. The benchmark computations of the BFS flow at Re=800 were in fact origi-
nally intended for use in a mini-symposium on OBCs [8]. Because of their more global
high-order nature (compared with conventional finite difference or finite element methods),
spectral methods can be quite sensitive to boundary conditions [9], and therefore, especially
appropriate for a study of OBCs. In the recent OBC mini-symposium, only a single contri-
bution used a spectral method, namely a spectral element approach the results of which
have since been proven unreliable.

2. PROBLEM STATEMENT

2.1. Basic equations

The equation for unsteady two-dimensional laminar incompressible flow expressing the
conservation of momentum is commonly formulated in dimensionless primitive variable
form as:

(u
(t

+u · 9u= −9p+
1

Re
92u, (1)

where u= (u, 6) are velocity components in the Cartesian co-ordinate directions (x, y), p is
the kinematic pressure, and t is the time. In addition, the incompressibility constraint or
continuity equation,

9 · u=0, (2)

must also be satisfied. Whereas Equation (1) is applied in the interior of the domain,
Equation (2) must be applied in both the interior and the boundary of the domain.
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2.2. Alternate equations

There is some empirical numerical evidence [10] that an alternate form of Equation (1), the
skew-symmetric form, namely,

(u
(t

= −9p−
1
2

[9 · (uu)+u · 9u]+
1

Re
92u= −9p−F(u), (3)

may have certain advantages in spectral computations, and hence, this form was used in the
actual computations. Here, F(u) represents the advection and diffusive terms, but excludes the
pressure term.

If the divergence of (1) is taken, then a Poisson equation for the pressure field or a
continuous pressure-Poisson equation (PPE) results, namely,

92p= −
� (
(t

(9 · u)+9 · (u · 9u)−
1

Re
9 · (92u)

n
= −9 · (u · 9u). (4)

The right-hand-side of the first equality, with the unsteady term set to zero, has been termed
the consistent PPE [11] to distinguish it from the second equality, in which Equation (2) has
been applied throughout. The latter equation has been widely used in numerical solutions of
incompressible flow, and has generated much discussion, especially with regards to the
appropriate boundary conditions. Gresho and Sani [11] have argued that, for a problem in
which only Dirichlet velocity boundary conditions are imposed, no additional boundary
condition for p is necessary. In a numerical solution of the PPE, however, a boundary
condition must be imposed, and they asserted that the normal momentum equation,

n ·
�(u
(t

+u · 9u+9p−
1

Re
92u

n
=0, (5)

is the appropriate boundary condition for Equation (4) wherever a Dirichlet condition on
velocity is imposed.

2.3. Computational domain and initial and boundary conditions

The step geometry chosen for the study has a step height of 1
2 and a channel height of 1

(Figure 1). The solution domain corresponds to the geometry of the benchmark case of
Gartling [4], namely, a section of total length 30 downstream of the step with no section

Figure 1. Computational domain and grid.
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upstream of the step. In the study of outflow conditions, the computational domain down-
stream of the step is shortened to a length of 7. This length was chosen by the organizers of
the OBC mini-symposium [8], since a recirculation region is thereby truncated, and hence
severely tests the ability of an OBC to allow flow to return into the truncated domain.

The governing differential equations must be completed by boundary conditions. On the
stationary solid walls, the no-slip condition (u=0) is imposed, while at the inlet, a parabolic
velocity profile is specified, i.e. u(x=0, y]0)=24y(1

2−y), 6(x=0, y]0)=0. u is continuous
at the inlet, but its cross-stream gradient is not, such that a weak singularity is present. On the
other hand, 6 is smooth, being identically equal to zero throughout x=0.

For computations done over the entire domain (the full-domain case), the pseudo stress-free
condition,

−p+
1

Re
(u
(x

=0 and
(6

(x
=0, (6)

is applied at the outlet. This condition is popular among finite element practitioners, since it
arises as the natural boundary condition when the viscous stress term is formulated as in
Equation (1). Sani and Gresho [8] remarked that, although its physical interpretation is not
clear, Equation (6) is preferable to the true stress-free condition

−p+
2

Re
(u
(x

=0, (7a)

(u
(y

+
(6

(x
=0, (7b)

because the latter, particularly Equation (7b), tends to be too restrictive for most flows, since
stresses do not necessarily all vanish at an outflow boundary. In his finite element benchmark
solution, Gartling [4] imposed hybrid outlet conditions (6=0 and Equation (7a)). Since the
outlet at x=30 is sufficiently far from the step, the flow has essentially relaxed to a parallel
uniform flow with a fully developed parabolic velocity profile, such that Equation (6) becomes
equivalent to the outlet conditions of Gartling.

2.4. Outflow boundary conditions (OBCs)

Because of their more global nature, spectral methods tend to be more sensitive to imposed
boundary conditions [9,12]. Domain decomposition in spectral methods has specifically been
considered as a means of reducing this sensitivity. Schumack et al. [13] examined the use of
multiple domains in isolating boundary singularities in a cavity flow, so as to reduce their
effect on spectral simulations in regions away from the singularities. Separate domains at the
outlet, which could act as a buffer, have also enjoyed popularity [1,12]. Though from a
practical viewpoint, the sensitivity to boundary conditions may be a disadvantage, it may be
exploited in studying outflow boundary conditions since effects that may apparently be
negligible when conventional, more local methods are applied, may be amplified. In the present
work with only two domains, nodes at the outlet boundary are directly connected through the
interpolating polynomial to nodes at the inlet plane. As such, distorting effects at the outlet
due to imperfectly transmitting boundary conditions are more likely to be communicated
throughout the domain.

In the study of outflow boundary conditions, two other conditions, in addition to Equation
(6) were considered. The zero normal gradient condition,
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(u
(t

=0, (8)

is frequently used in finite difference and finite volume simulations when the outlet is placed
in a region far from any flow feature of interest. Though Sani and Gresho [8] argued that this
condition may yield an ill-posed problem, a number of (finite difference/finite volume)
contributors to the mini-symposium on OBCs applied it successfully to the BFS flow, one even
arguing that it performed better than Equation (6).

The ‘radiation’ or convective boundary condition

(u
(t

+Uc

(u
(x

=0 (9)

has recently become popular (again primarily in the finite difference and finite volume world),
especially in transient problems with flow features, such as vortices that must leave the
computational domain with minimum distortion. Here, Uc is a convection velocity associated
with such features, which is usually not known a priori. Again, while Sani and Gresho [8] note
that this condition also may yield an ill-posed problem, it was used with some success by at
least one of the contributors to the OBC mini-symposium. For a steady flow, the application
of the radiation condition should revert to the simple zero normal gradient conditions
(Equation (8)) when the steady state is approached. In an ‘explicit’ implementation (un+1=
un−Uc((un/(x)), this OBC reduces to a Dirichlet specification of the velocity at the outlet,
which, as will be seen, is especially simple to implement in the present approach. It proved
however, unstable for the BFS problem, for which the following explanation may be offered.
The incompressibility constraint and the no-slip condition along the channel top and bottom
boundaries together imply that (6/(y=0 at the channel boundaries. If however, the velocity
profile at the outlet is already specified (through a Dirichlet condition based on an explicitly
implemented radiation condition), then this overspecification gives rise to an inconsistency,
leading to an explosive instability. An implicit implementation of the radiation condition was
also tested, but was not more successful. This condition was however, applied ‘successfully’ to
the external unconfined unsteady flow around a square cylinder.

3. THE NUMERICAL APPROACH

The basic PSME solution algorithm is a multidomain primitive variable Chebyshev collocation
technique, in which the velocity and pressure fields are expanded in equal-order Chebyshev
polynomials, Tn(x) or Tm(y), on Gauss–Lobatto collocation points, i.e. including endpoints.
The incompressibility constraint is enforced via a projection scheme and velocity boundary
conditions are satisfied exactly. It is described fully in Ku et al. [7], and so only the essential
aspects are given here. Gresho [14] emphasized the importance of satisfying the incompressibil-
ity constraint in the solution of the governing equations. In G93, the spectral element method
applied to the BFS flow was found to satisfy overall continuity over an element, but local
divergences within elements were large if spatial resolution was insufficient. Recognizing the
importance of the incompressibility constraint, the PSME approach enforces incompressibility
at all nodes, including all domain and subdomain boundary nodes. At subdomain interfaces,
the method directly imposes the incompressibility constraint rather than explicitly imposing the
continuity of the first derivative (continuity of the function itself is obtained by construction).
Like the spectral element method, continuity of the first derivative is imposed only implicitly,
and is satisfied exactly only in the limit as the order of the basis polynomial tends to infinity.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 411–427 (1999)



J. KESKAR AND D.A. LYN416

3.1. The projection scheme

The projection scheme assumes the velocity at the (n+1)th time step at any point to be of
the form,

un+1= ūn+1−Dt9p̃, (10)

where Dt is the time step, and ū= (ū, 6̄) are intermediate ‘predicted’ velocities. The time level
of p̃ will be discussed below. In the domain interior, ū are obtained from an explicit first-order
approximation to the unsteady momentum equation without the pressure-gradient term,

ūn+1−un

Dt
=F(un). (11)

In the correction step, the intermediate velocity solution is projected onto a divergence-free
space by requiring that un+1 satisfy the incompressibility constraint. The result is the
well-known semi-discrete pressure-Poisson equation,

9 · un+1= −92p̃+
1
Dt

9 · ūn+1=0, (12)

for p̃. With a solution for p̃, a divergence-free velocity field can be obtained by updating with
Equation (10). Because the momentum equation is applied only within the domain, ūn+1 is
determined through Equation (11) only within the domain and not on the boundary.

3.2. The original and the modified PSME approach

The question of the appropriate boundary condition to be applied in the solution of
Equation (12) must be addressed. Whereas other approaches based on a PPE typically seek to
impose a boundary condition on p (here p̃), the PSME approach directly enforces the
incompressibility constraint on the boundary, i.e. the PPE (Equation (12)) is also applied on
the boundary. For a Dirichlet problem, the ill-posedness of applying the differential equation
on the boundary is resolved by eliminating the combination of ūn+1 and p̃ in favor of known
boundary values of un+1 using Equation (10) everywhere on the boundary in the assembly of
the linear system before it is solved. The problem of spurious pressure oscillation, also
associated with the treatment of boundary points, introduces other complications, as is
elaborated below. In this respect, it resembles the familiar static condensation procedure. Thus,
the exact velocity boundary conditions provide effective ‘boundary conditions’ for the PPE,
which becomes solvable without invoking boundary conditions on p̃. This is entirely in accord
with the claim [11] that Dirichlet velocity conditions are sufficient for the numerical solution
of Equations (1) and (2). The original formulation of the PSME approach is straightforward
in implementation when Dirichlet conditions on u are imposed. For general boundary
conditions, involving velocity gradients (and possibly pressure), velocities are not known on
the boundary and so cannot be used to analytically modify the PPE at the boundary nodes and
thus obtain a solvable system.

In order to accommodate a variety of boundary conditions, a modification of the original
PSME method was undertaken. The explicit step in the treatment of the momentum equation
in the interior cannot enforce velocity boundary conditions. This does not present a problem
for Dirichlet velocity conditions, since velocities are known at the boundaries. In the PSME
approach, all boundary conditions, including those on the velocity, must be enforced in the
solution of the discrete PPE. The PPE is still applied at every node, including those at the
boundary, but, instead of incorporating immediately known (Dirichlet) boundary values of u,
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the resulting system of equations is augmented by additional auxiliary equations enforcing
the velocity boundary conditions, somewhat similar to a spectral tau method [9,15]. Addi-
tional equations require however, additional unknowns, and the question arises as to which
‘unknowns’ are available. For a two-dimensional problem, at each boundary node, three
conditions need to be satisfied: one due to the incompressibility constraint and two others
generally imposed on the velocity (and possibly also involving the pressure), such as no-slip
conditions.

One unknown is p̃, but two others must be found. The intermediate variable, ū, is
obtained from the momentum equations only in the interior of the domain, and are unde-
termined on the boundary. The undetermined boundary values of ū= (ū, 6̄) provide pre-
cisely the required number of unknowns. In the simple case of Dirichlet boundary
conditions on velocity, these unknowns need not be explicitly used, but an examination of
the PSME ‘condensation’ procedure for treating Dirichlet velocity conditions may be inter-
preted as an analytic elimination of unknowns (including ū). The use of ū and p̃ in
additional equations for boundary values represents an entirely equivalent numerical elimi-
nation procedure. Thus, at each boundary node, three boundary conditions are matched
with three unknowns, (p̃, ū n+1, 6̄n+1). In the current implementation of the algorithm,
further economy is achieved by using Equation (10) to eliminate the unknown intermediate
velocity variables in favor of unknown unD

n+1 at boundary points where non-Dirichlet condi-
tions are imposed, and known uD

n+1 where Dirichlet conditions are imposed. Thus, an
‘augmented’ PPE in matrix form,

A
� p̃

unD
n+1

n
=b, (13)

is solved in which p̃ is a vector of length Ntot equal to the total number of nodes (including
boundary nodes), and unD

n+1 is a vector of length 2NnD, where NnD is the total number of
boundary nodes where non-Dirichlet conditions are imposed. The elements of the matrix A
are obtained from the elements of Chebyshev collocation first and second derivative ma-
trices, while the vector b is obtained from the already computed values of ū in the interior
of the domain and, at (velocity) Dirichlet boundary points, the known boundary values,
unD

n+1.
Computations were also attempted with the normal momentum equations (Equation (5))

as boundary conditions for the PPE. In the case of a regularized cavity flow, the solution
obtained was divergence-free in the domain interior, but small non-zero divergences were
observed on the boundary. These remained localized on the boundary and did not lead to
any computational instability. On the other hand, in the benchmark BFS flow, additional
problems with the use of Equation (5) arise due to the discontinuity of the cross-stream
velocity gradient at the step. Boundary divergence becomes quite substantial, and, at least
with the present method, eventually led to explosive instability. The normal momentum
equation as boundary condition would seem to require more smoothness than the original
continuity equation (which does not involve (u/(y). Similar problems when imposing Equa-
tion (5) as a boundary condition have been reported for fractional step methods [12].

3.3. The time le6el of p̃

Substitution of Equation (11) into Equation (12) yields a PPE directly in terms of un as

92p̃= −
� 1
Dt

(9 · un)+9 · (un9 · un)−
1

Re
9 · (92un)

n
, (14)
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which is seen to be a form of the consistent PPE (Equation (4)). Gresho [14] has argued that,
since the pressure is always in equilibrium with the associated velocity field and the velocity
field on the right-hand-side of Equation (14) is evaluated at time level, n, then p̃=pn. From
this perspective, the scheme is viewed as a simple forward Euler method. If the boundary
condition applied to Equation (14) were derived from the normal momentum equation
(Equation (5)) with velocity terms evaluated at the nth time level, then this argument would be
clearly applicable. In the present approach, however, although Equation (14) is applied in the
interior of the domain, the imposed boundary conditions involves velocities (in the case of
Dirichlet conditions, known, and in the case of non-Dirichlet conditions, unknown) at the
(n+1)th time level. As such, the time level of p̃ is ambiguous in this regard, similar to the
semi-implicit scheme of Chorin [16], and should be interpreted as the pressure at an intermedi-
ate time, or as a first-order (in time) estimate of pn+1 (or for that matter, pn) [17]. Also, the
scheme cannot be strictly characterized as simple forward Euler because of the implicit
treatment of the boundary nodes. For the present problem, in which the flow is expected to
relax to a steady state, the time level of p̃ will be of no consequence.

3.4. Strategies in spectral domain decomposition

In conventional finite element or finite volume techniques, grid refinement is typically
achieved by increasing the number of elements or cells. Whereas with global spectral methods,
grid refinement is accomplished by increasing the order (Nx or Ny) of the basis polynomial,
with spectral domain decomposition approaches, both strategies can be considered. Kaiksis et
al. [1] and the spectral element solution in G3 considered mainly the option of increasing the
number of subdomains, though the effect of increasing the order of the basis polynomial was
also studied. In the simulation of the BFS at Re=800, Kaiksis et al. used 44 subdomains with
most results being obtained with Nx=Ny=8, while the finest grid in the spectral element
simulation in G3 used 136 subdomains, with Nx=Ny=8. The present work examines the
alternative strategy, that of minimizing the number of subdomains and obtaining higher
resolution by means of increasing the order of the basis polynomials. Although the problem
domain is very regular, being a simple rectangle, the step at the inlet with its associated
boundary condition dictates that the minimum number of subdomains appropriate for the
BFS flow is two. All computations reported below were performed with two subdomains.
Because of the large aspect ratio (channel length/channel height) for such subdomains, it might
be expected that, in contrast to the choice made in previous spectral element studies, the order
of the polynomial in the streamwise direction, Nx, may need to be much larger than that in the
cross-stream direction, Ny.

3.5. Some numerical details

Computations were started with zero initial conditions everywhere in the interior of the
domain. No problem was encountered with the ill-posedness of the initial data, which does not
satisfy the divergence-free condition. Gresho [14] has noted that a backward Euler or the
semi-implicit projection scheme of Chorin [16] converts any initial velocity field into a
divergence-free field after the initial time step. Although the present scheme treats the nodes in
the interior in an explicit fashion, a divergence-free solution was obtained after the first time
step, which is attributed to the implicit treatment of boundary points. Though the initial
pressure might be unphysical, this is of no consequence in the final steady state. The
computations were marched in time until a steady state was achieved; no parameter marching
(starting at low Re and increasing Re during computations) was performed. Because of the
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explicit treatment of the momentum equations in the domain interior, the time step for
numerical stability, (Dt)crit is limited by both a Courant condition ((Dt)crit� (Ds)min/Umax) as
well as a diffusion condition, (Dt)crit�Re(Ds)min

2 , where Ds refers to either Dx or Dy. For high
Re problems, the Courant condition tends to be more restrictive [7], as was found to be the
case in the present work where Re=800. The time step was chosen to be just below the
stability limit (e.g. Dt=0.002 for the Re=800, full-domain case with Nx=90 and Ny=12),
since interest was focused on the final steady state. Computations were terminated when the
solution at two different times (t2− t1=1) did not differ significantly, measured by the L1

norm, viz. � �f(t2)− f(t1)�B2×10−5, where the sum is taken over all nodes, and f is either u
or 6. Computations were performed until at least t=700 for the full-domain case; the time
taken to satisfy the termination criterion was significantly less for the short-domain case, and
hence these computations were terminated at t=400.

A standard LU decomposition is performed on the matrix A in Equation (13), and the
solution at each time step is obtained using the already factorized matrix by matrix multiplica-
tion. Because the time integration is quite long, the factorization step is negligible compared
with the time marching step. All computations were done in 32-bit precision on various models
of IBM/RS6000 workstations. On a Model 595, the factorization step for the (Nx=90,
Ny=12) simulation required :130 s of CPU time, while each time step required :1 s of
CPU time. No special compiler optimization directives were specified.

An attractive feature of spectral methods is that the derived quantities involving derivatives
or integrals of the primitive variables, such as the vorticity, v ((6/(x−(u/(y), or the
streamfunction, F=	L u dy, can be evaluated with ‘spectral’ accuracy because the high-order
approximating polynomial can be recovered from nodal values. Thus, provided the solution is
smooth and well-resolved, these quantities will share the asymptotic exponential accuracy of
the solution. For the same reason, interpolation of values between nodes can also be
performed accurately. This is particularly important if much fewer, and hence much more
widely spaced, nodes are possible with spectral methods. For example, in addition to the local
divergence (9 ·u) being zero (to machine accuracy) at nodes by construction; the interpolated
divergence is also zero (O(10−10)). All derived quantities in the following are spectrally
evaluated and considerable use is made of spectral interpolation. Thus, whereas Gartling [4]
evaluated derivatives at the 2×2 Gauss points and projected these to corner nodes by bilinear
extrapolation, as well as linearly interpolated nodal shear stresses to identify separation and
reattachment points, the present work evaluated derivatives and interpolated from a high-order
(either of order Nx or Ny except in the case of pressure field where the order is reduced, see
below) polynomial.

The non-staggered arrangement of the variables, combined with the imposition of the
incompressibility on the boundary, gives rise to spurious oscillations in the pressure field
[15,18] due to the use of modes with pressure gradients identically zero at all collocation points
where the momentum equation is enforced. Pressure gradients at the collocation points in the
interior of the domain, where the momentum equations are enforced are however, computed
correctly, so that the spurious oscillations have no effect on velocity and velocity-derived fields.
They do, however, preclude determining a raw pressure field from the computed solution. A
number of options for filtering or otherwise eliminating these spurious oscillations have been
proposed [15,18]. Since the spurious oscillations stem from the highest-order polynomial, TNx

or TNy
, a post-processing step is performed in the present work in which the correct

pressure-gradient information in the domain interior is used to reconstruct a two-dimensional
Chebyshev interpolant for pressure of order lower than the original expansion, viz. of order
(Nx−2)× (Ny−1). This ‘filtering’ operation does degrade the pressure solution somewhat,
but is relatively straightforward to implement and does suppress the spurious oscillations.
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4. RESULTS AND DISCUSSION

4.1. The full-domain case

The results with two grids, both with two domains but with two different values of (Nx,
Ny)= (90, 12), and (100, 18), are presented. The grid (nodes) corresponding to Nx=90 and
Ny=12 is shown in Figure 1. The Gauss–Lobatto Chebyshev collocation points are clustered
at the ends of the domain, with points in the central region being relatively widely spaced.
From a conventional perspective, this might appear to imply that the resolution is coarse in the
central region, but because of its global nature, this is not the case when a spectral method is
used. Further, the minimum separations between adjacent grid points are 0.0091 and 0.0085
(minimum Dx and Dy respectively), which might be compared with the corresponding values,
:0.05 and :0.01, for the finest grid in the spectral element solution in G93. In spite of the
much larger (by approximately a factor of four) total number of nodes in the fine grid spectral
element solution, the minimum separations in the present work are smaller, a heuristic
indication of the finer resolution in the present work [9].

Contours of the streamfunction (F), the vorticity (v), the pressure (p), and the local
divergence (9 · u) obtained with the 90×12 grid are shown in Figure 2 for the domain up to
x=12. The contours were constructed by spectrally interpolating the solution at the irregularly
spaced collocation nodes to a regular grid with uniform Dx=0.03 and Dy=0.0125. As
expected, two regions of flow separations are found, one separating at the step and reattaching
at the lower boundary, and the other separating and reattaching at the upper boundary. The
overall smooth contours of these key variables indicate that the solution obtained is generally
well-behaved, although some difficulty in the immediate vicinity of the step will be evident
below. The absence of cells characteristic of spurious pressure oscillations in the pressure
solution shows that these have been successfully suppressed by the post-processing filtering and
reconstruction operation. Further, the maximum local divergence is O(10−10), which occurs at
the boundaries of the subdomains, as is typical of spectral solutions.

Various standard measures are used to compare numerical predictions of the BFS flow,
including the locations of the separation (denoted xs) and reattachment (denoted xr) points,
and the values of the F and v at local extremes of F, termed vortex centers [4] (and so denoted
here as (x6, y6) or x6). Characteristics on the lower boundary are denoted with an l subscript,
and those on the upper boundary with a u subscript. The present results are compared in Table
I with those of Gartling [4] and others reported in G93. Separation and reattachment points
were identified as points of zero shear stress (=(u/(y), while extremes in F were found by
simple manual search. Again, spectral interpolation was used throughout in these evaluations.
The term ‘grid-independence’ is relative; a difference in the fourth or fifth significant figure is
seen in a comparison of the results using the two grids. For most purposes, the results of the
90×12 grid may be termed grid-independent as far as the prediction of these standard
measures are concerned, in spite of slight wiggles in the v, (and also p) contours near the step.
The agreement at both resolutions with the results of Gartling is generally excellent. The
estimated locations of the vortex centers differ, but this is attributed to the flat variation of F
in the vicinity of the centers, the difference in F between the center according to Gartling and
the centers estimated here being O(10−5), even though the locations change in the second
decimal place. Table I also shows that the values of F, and v, at the Gartling vortex centers
(denoted (x6)G) are in excellent agreement. The present solution generally agrees more closely
with the results of Gartling than with those of the finite difference streamfunction/vorticity
solution (FD) except with respect to the locations of the vortex centers and the values of F and
v.
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Figure 2. Contours of flow characteristics up to x=12 derived or obtained from full-domain computations: (a) F, (b)
v, (c) p and (d) divergence (9 ·u) obtained with the 90×12 grid. Contour levels are set at the same levels as in Gartling
[4], except for 9 ·u, for which the levels are 91×10−11, 93×10−11 and 95×10−11. Dashed lines indicate

negative values.

The total number of nodes or grid points used in the present work is significantly smaller
than that of previous stable simulations, and, for the 90×12 grid, is even smaller than the
total number of nodes used in the Kaiksis et al. [1] simulations (=2700 nodes), that are known
to be inadequately resolved. A 90×10 grid with a total of 1911 nodes still yielded a convergent
steady solution, yet a simulation with a larger total number of nodes, namely with a 80×12
grid (2025 nodes), failed to converge to a steady state, i.e. the difference between solutions at
the two different times did not decay with time. Thus, while the resolution in the y-direction
is already adequate with Ny=10, a resolution of Nx\80 is necessary; the asymptotic
exponential accuracy may only be achieved beyond a minimum number of nodes [9,15]. At
least in a transient simulation, the streamwise resolution may be more important than might
be at first thought, because small features are generated during the simulation, eventually
disappearing at the steady state.

Transverse profiles of F, v, and p are plotted in Figure 3 at four stations, x=0, 1, 4 and
at 7. Except for the inlet v profile, these generally exhibit a smooth variation across the
subdomain boundary. The wiggles in the inlet v profile are due to the discontinuity in (u/(y
at the inlet plane. Except for the v at the inlet plane, the solutions for F and v at the two
resolutions are visually identical. A slight difference in p is due to a constant difference in the
reference pressure. A more detailed comparison of point values at x=7 with the benchmark
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results is given in Table II. For both resolutions, the agreement between the present and the
benchmark results for u is as before, excellent. The agreement deteriorates slightly in the case
of v, with better agreement between the present results at the two resolutions than with the
benchmark results. At this level of agreement in the primitive variables, it is not clear whether
the benchmark or the present solution is the more accurate, since v is a derived result, and
some error might have been made in the benchmark solution in computing derivative
quantities from the raw solution of the primitive variables. The largest differences are found in
a comparison of the pressure, where an absolute difference of :0.008 or :5% is seen.
Gartling [4] noted that the pressure in incompressible flows is a very sensitive variable, and a
comparison of his mesh C and mesh E (the finest grid) results still showed a noticeable
difference (:0.005) at the inlet plane, such that grid-independence, at least for the pressure
solution, may not have been completely achieved. This also holds for the present computations
with the difference between the results at the two resolutions (:0.0019 or :1%) being
entirely attributable to the difference in reference pressure. On the other hand, the weak
singularity at the step is likely to have had an impact on the spectral solution. The pressure
differences away from the step region are however, accurately computed; the difference in

Table I. Comparison of present results on characteristic flow parameters with previously
published results

I II GC GE FD SEQuantity

6.0970(xr)l 6.0964 6.09 6.10 6.082 6.10
4.8534(xs)u 4.8534 4.85 4.85 4.8388 4.86

10.4910.464810.4810.4810.478510.4811(xr)u

3.414 3.392 3.350 3.350 3.375 n/a(x6)l

−0.205 −0.204 −0.200(y6)l −0.200 −0.2032 n/a
7.439 n/a7.4375(x6)u 7.4007.4007.447

n/a0.31250.300(y6)u 0.3000.3150.315

F(x6, y6)l −0.03420 −0.03420 n/a n/a 0.034195 −0.0342
−2.2623 −2.2620 n/a n/a n/a n/av(x6, y6)l

−0.03419 −0.0342 −0.0342 −0.034195 −0.0342F((x6l)G) −0.03418
−2.283−2.285 n/a n/a−2.2822v((x6l)G) −2.2776

0.50653 n/a n/aF(x6, y6)u 0.506610.50652 0.5065
v(x6, y6)l 1.1474 1.1527 n/a n/a n/a n/a

0.50639 0.50639 0.5064F[(x6u)G] 0.5064 n/a n/a
v [(x6u)G] 1.3199 1.3212 1.321 1.322 n/a n/a

2275 3737 32 841Nodes 129 681 (1920×128) �8000

1. In this and Table II, I and II refer to the present results using the grids (Nx=90, Ny=12) and (Nx=100,
Ny=18) respectively.
2. GC and GE refer to the results of Gartling [4] on mesh C and on mesh E respectively, using biquadratic
velocity and linear discontinuous pressure elements to solve the steady problem.
3. FD refers to results reported in G93 obtained from a transient simulation with a finite difference
(centered differences) solution of the equations in a streamfunction/vorticity formulation. The domain was
substantially shortened so the grid given above extended only up to x=15, and the time integration was
performed up to t=400.
4. SE refers to results reported in G93 obtained from a transient simulation with a spectral element
approach presumably on the finest grid, namely 136 elements with either Nx=Ny=8 for a total of 9009
nodes. These computations were actually done for a slightly longer channel, up to x=34; for a channel up
to x=30, the total number of nodes would be reduced by approximately 10%, yielding the approximate
estimate given in the table. The time integration was performed to t=200 and results extrapolated.
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Figure 3. Comparison of profiles of characteristic flow quantities derived or obtained from full-domain computations
with different grids: (a) F, (b) v and (c) p, at different sections (x=0, 1, 4, 7). Solid lines obtained from 100×18 grid

and symbols obtained from 90×12 grid.

pressure between the top and the bottom at x=7 in both the present solutions and the
benchmark solution agree to less than 1%.

These results show that, in spite of the presence of the weak singularity at the step, which
would be much milder if an upstream section would have also been simulated, accurate and
stable steady state solutions for Re=800 can be obtained with a spectral domain decomposi-
tion approach, with a substantially smaller number of nodes than used in previous work.
Whether ‘exponential’ rates of convergence were achieved, at least in regions where the flow
solution is smooth, would require more exhaustive simulations. In terms solely of the total
number of nodes required for a given resolution, the strategy of increasing the order of the
basis polynomial is much more effective than increasing the number of subdomains. This is
expected for smooth solutions, since the accuracy of spectral methods increases exponentially
with the order of the approximating polynomial, while increasing the number of subdomains
for the same number of total nodes only results in an algebraic improvement. In a study of
Stokes flow in a cavity [13], it was concluded that single-domain spectral simulations were
‘vastly more accurate’ than multidomain simulations for given matrix size. Interestingly, for
the same BFS flow, G93 also reported on a comparison between finite element solutions with
elements of different order, and concluded that many more lower-order (bilinear) elements
were needed for the same accuracy achieved by the higher-order (biquadratic) elements. While
overall computational effort may be influenced by other algorithmic issues, e.g. the efficient
solution of the resulting linear system and parallelization/vectorization of the algorithm, than
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solely the number of nodes, the large (at least a factor of two) reduction in the number of
nodes makes the spectral approach much more attractive. Users of spectral domain decompo-
sition methods should therefore, weigh carefully the undoubted advantages of domain decom-
position, but should not automatically adopt the strategy of increasing the number of
subdomains as the only feasible way of increasing the resolution.

4.2. The short-domain case

In all computations for the short-domain case, with outlet at x=7, two subdomains were
used with Nx=50 and Ny=12 in each domain. Because only a single subdomain is used in the
x-direction, the streamwise locations of the nodes in a spectral solution for the short-domain
case necessarily differ from the locations for the full-domain case. The choice of Nx=50
ensures that streamwise nodal density is higher than that used in the full-domain case. Rather
surprisingly, the zero normal gradient outflow condition yields a qualitatively erroneous but
still stable and convergent solution, with no separation on the upper boundary and no
reattachment on the lower boundary within the shortened domain. The contours of relevant
variables obtained using the zero normal gradient condition (Figure 4) do not exhibit any
otherwise anomalous behavior, except possibly a slight wiggle in the pressure contours at the
outflow boundary. The present results contrast with results (reviewed in [8]) obtained with
finite volume approaches, where good agreement was apparently obtained with this condition.

Because of the use of Gauss–Lobatto points, the spectral method using Chebyshev polyno-
mials necessarily clusters points near the boundaries of each subdomain, and, in particular,
near the outlet. The organizers of the OBC symposium [8] specified that no extra fine meshes
be used near the outlet, presumably because the effects of the OBC would thereby be limited

Table II. Comparison of full-domain solution at x=7 at different resolutions and with the benchmark

vpuy

I II Gartling I II Gartling I II Gartling

0.50 0.0000 0.00000 0.000 0.1622 0.1641 0.1562 −1.0342 −1.0323 −1.034
−0.03817 −0.03814 −0.038 0.1623 0.16410.45 0.1562 −0.4928 −0.4917 −0.493

0.0610.06310−0.063170.15620.16410.1623−0.049−0.04892−0.048900.40
0.63850.63720.15620.16410.1623 0.635−0.032−0.03154−0.031620.35

0.01519 0.01516 0.015 0.1622 0.16410.30 0.1562 1.2481 1.2430 1.237
0.25 0.09320 0.09300 0.092 0.1623 0.1641 0.1562 1.8937 1.8939 1.888

2.5880.20 0.2043 0.2042 0.204 2.58670.1624 0.1642 0.1563 2.5847
0.3494 0.349 0.1627 0.1646 0.1567 3.2517 3.2498 3.2670.34940.15

0.5232 0.5231 0.522 0.1635 0.1654 0.15740.10 3.7185 3.7191 3.751
0.7101 0.7100 0.709 0.1651 0.16690.05 0.1590 3.7743 3.7775 3.821
0.88620.00 0.8861 0.885 0.1677 0.1695 0.1615 3.3062 3.3038 3.345

2.3622.33022.33630.16520.17320.17131.0241.02471.0248−0.05
1.046−0.10 1.1055 1.1055 1.105 1.03260.1758 0.1777 0.1697 1.0306

1.1177 1.118 0.1807 0.1825 0.1746 −0.3667 −0.3678 −0.3741.1178−0.15
1.0618 1.0618 1.062 0.1852 0.1871 0.1792−0.20 −1.6685 −1.6654 −1.684
0.9476 0.9477 0.948 0.1891 0.1909−0.25 0.1831 −2.6916 −2.6921 −2.719
0.7915 0.7916 0.792 0.1919 0.1938−0.30 0.1859 −3.3615 −3.3602 −3.392

−3.658−3.6420−3.64120.18760.19550.19370.6130.61260.6124−0.35
0.4270−0.40 0.4271 0.428 0.1946 0.1964 0.1885 −3.7169 −3.7173 −3.687

−0.45 −4.132−4.1680−4.16600.18880.19680.19490.2320.23190.2318
−5.140−5.1517−5.15200.18890.19690.19500.0000.00000.0000−0.50
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Figure 4. Contours of flow characteristics derived or obtained with the 50×12 grid in the shortened domain with the
zero normal gradient outflow boundary condition: (a) F, (b) v, (c) p and (d) divergence (9 ·u). Contour levels are the

same as in Figure 2.

by more local finite differences or finite element approaches. The present results with the zero
normal gradient OBC are possibly all the more surprising, but indicate again that node
clustering in spectral methods is not necessarily associated with localization. Rather, the
high-order of the polynomial expansion and the use of a single subdomain in the x-direction
result in greater sensitivity and more global effect of the OBC.

In spite of differences (O(3–4%)) for the separation and reattachment points, the results
shown in Table III using the pseudo stress-free condition must seem remarkably good
compared with the notably poor performance of the zero normal gradient condition. Also
shown in Table III are results of a finite element computations [5] for the same pseudo stress
condition, which differ significantly from the present as well as the benchmark results, and
would seem to imply a quite poor performance of this condition. The difference is attributed
to coarseness of the mesh and the use of lower-order elements, and illustrates the danger of
comparing only short-domain solutions with the benchmark full-domain solutions without first
comparing full-domain solutions. Much closer agreement for the short-domain solution is
found with a finite difference streamfunction/vorticity solution reported in G93, though with
a different boundary condition.
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Table III. Comparison of the present full- and short-domain results on basic
flow characteristics using the pseudo stress-free condition with previous short-

domain results reviewed in [8]

Quantity Present results FE FD

Short-domain Full-domain Short-domain

5.905 6.097 5.578(xr)l 5.86
4.682 4.853 4.29(xs)u 4.636
3.361 3.414(x6)l 2.90 3.328

−0.205 −0.205 −0.325 −0.203(y6)l

−0.03415 −0.03420 −0.0314F(x6, y6)l −0.03412
v(x6, y6)l −2.271 −2.262 −2.46 −2.285

1. The FE short-domain was obtained using a 42×20 mesh, bilinear velocity and
piecewise constant pressure elements with the pseudo stress-free outflow condition.
2. The FD short-domain was obtained with the same code as that described in Table I.
3. Results for the vortex center associated with the upper recirculation region from the
short-domain computations are not shown because vorticities were still increasing
towards the outflow boundary.

5. SUMMARY

The steady laminar backward-facing step flow at a Reynolds number of 800, based on channel
height, was studied using a spectral domain decomposition approach, emphasizing the
satisfaction of the incompressibility constraint. Stable convergent solutions were obtained with
substantially fewer nodes than in previously reported work by increasing the order of the
polynomial expansion and minimizing the number of subdomains. Excellent agreement in
terms of the velocity field and the characteristics of the flow was achieved with the benchmark
solution. The greater sensitivity of spectral methods to boundary conditions was also exploited
in studying the effect of two different, but widely used, sets of outflow boundary condition: the
zero normal gradient and the pseudo stress-free conditions. The latter was found to be much
more robust than the former, which resulted in a qualitatively erroneous solution.
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